Calculus A for Economics

Exercise Number 1

1) Define the functions $f(x)=\frac{x-2}{x+1}$ and $g(x)=\frac{|x-2|}{x+1}$. Compute:
a) $f(0) ; \quad f(\sqrt{2}) ; \quad g(4) \quad$ b) $f(t+1)-f(t)$
2) For each of the following functions find the domain of definition:
a) $y=\sqrt{5-2 x}$
b) $y=\frac{1}{\sqrt{|x|-x}}$
c) $y=\frac{x}{\sqrt{x^{2}-3 x+2}}$
d) $y=\sqrt{\frac{x-2}{x+2}}+\sqrt{\frac{1-x}{1+x}}$
3) Prove that $||a|-|b|| \leq|a-b|$ for all $a, b \in \mathbf{R}$.
(Hint: Compute $\| a\left|-|b|^{2}\right.$).
4 Determine which of the following functions is one to one:
a) $f(t)=\sqrt{1-t}$
b) $g(x)=x+\frac{1}{x}$
4) Determine which of the following functions are even, which are odd, and which are not even and not odd:
a) $y=x-x^{2}$
b) $y=x-x^{3}+x^{5}$
c) $y=\frac{a^{x}+a^{-x}}{2}$
5) Show that for any function $f(x)$, the function $f(x)+f(-x)$ is even.
6) Find the range of the following functions:
a) $F(x)=\sqrt{1-x^{2}}$
b) $h(x)=\frac{1}{\sqrt{1-x}}$
7) For $f(x)=x+1$ and $g(x)=x-2$, solve the equation $|f(x)+g(x)|=|f(x)|+|g(x)|$.
8) Give a sketch of the following functions:
a) $y=2 x+3$
b) $y=x^{2}-5 x+6$
c) $y=\sqrt{x-1}$
d) $y=x^{3}$
e) $y=-|x-2|$
f) $y=|x|-x$
9) Given the function $f(x)=a x^{2}+b x+5$, find a and b such that $f(x+1)-f(x)=8 x+3$ for all x.
10) Write the function $f(x)=x^{2}+3 x+2$ as a sum of an even function and an odd function.
11) Let $f(x)=[x]$ where $[x]$ denotes the first integer number which is less or equal to x. For example $[2.3]=2 ;\left[\frac{1}{3}\right]=0 ;[4]=4 ;[-2.9]=-3$. Sketch the graph of the following functions:
a) $f(x)=[x]$.
b) $f(x)=x-[x]$.
