Calculus A for Economics

Exercise Number 1

1) Define the functions $f(x) = \frac{x-2}{x+1}$ and $g(x) = \frac{|x-2|}{x+1}$. Compute: a) f(0); $f(\sqrt{2})$; $g(4) \quad b)f(t+1) - f(t)$

2) For each of the following functions find the domain of definition:

a)
$$y = \sqrt{5 - 2x}$$

b) $y = \frac{1}{\sqrt{|x| - x}}$
c) $y = \frac{x}{\sqrt{x^2 - 3x + 2}}$
d) $y = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}$

3) Prove that $||a| - |b|| \le |a - b|$ for all $a, b \in \mathbf{R}$. (*Hint:* Compute $||a| - |b||^2$).

4 Determine which of the following functions is one to one:

a)
$$f(t) = \sqrt{1-t}$$
 b) $g(x) = x + \frac{1}{x}$

5) Determine which of the following functions are even, which are odd, and which are not even and not odd:

a)
$$y = x - x^2$$
 b) $y = x - x^3 + x^5$ c) $y = \frac{a^x + a^{-x}}{2}$

6) Show that for any function f(x), the function f(x) + f(-x) is even.

7) Find the range of the following functions:

a)
$$F(x) = \sqrt{1 - x^2}$$
 b) $h(x) = \frac{1}{\sqrt{1 - x^2}}$

8) For f(x) = x + 1 and g(x) = x - 2, solve the equation |f(x) + g(x)| = |f(x)| + |g(x)|. 9) Give a sketch of the following functions:

a)
$$y = 2x + 3$$

b) $y = x^2 - 5x + 6$
c) $y = \sqrt{x - 1}$
d) $y = x^3$
e) $y = -|x - 2|$
f) $y = |x| - x$

10) Given the function $f(x) = ax^2 + bx + 5$, find a and b such that f(x+1) - f(x) = 8x + 3 for all x.

11) Write the function $f(x) = x^2 + 3x + 2$ as a sum of an even function and an odd function.

12) Let f(x) = [x] where [x] denotes the first integer number which is less or equal to x. For example [2.3] = 2; $[\frac{1}{3}] = 0$; [4] = 4; [-2.9] = -3. Sketch the graph of the following functions:

a) f(x) = [x]. b) f(x) = x - [x].